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" THE EXPLOSIVE PROPERTIES OF THE AHI‘O-SUBSTITUTED,
. SYMMETRICAL TRINITROBENZENES (U)

By N. L. Coleburn, B. E. Drimmer

ABSTRACT: The shock sensitivity and failure diameters of four
explosive compounds of the trinitrobenzene series: 1, 3, 5-
trinitrobenzene (TNB), l-amino 2,4,6-trinitrobenzene (THA),
1,3~diarino 2,4,6-trinitrobenzene (DATB) and 1,3,5~triamino
2,4,6~trinitrobenzene (TATB) are functions of the number of

amino groups, heats of formation and oxygen balan:e. The most
sensitive, TNB, has the lowest heat of formation and oxygen
balance. Detonation failure occurs at diameters of € 0.3 cm TNB,
0.3 cm TNA, 0.53 cm DATB and 1.3 cm TATB. The detonation velocity-
charge density relation, D(m/gec) ™ 2480 + 2852 n{g/cm®), and the
neasured detonation energies of 815% 1% cal/g are the same for
each series member. The measured detonaticn pressures are 259.4
Xb 2nd 174.6 Xb for TATB at densities of 1.60 g/cm® and 1.50 g/cm®,
251.0 kb for DATB at 1.80 g/cm®, and 219.2 kb for TNB at 1.64g/:m®,
Rapidly applied shocks, with peak pressures as high as 100
kilobars in the NOL wedge test, fail to detonate 12.7 mm thick -
TATB samples. On the other hand, under such shock conditions,

the other three compounds are at least as sensitive as Composi-
tion B. Each, however, is less sensitive than pressed TNT to
slowly applied precssure pulses such as might develcp in an

impact accident.

EXPLOSION DYNAMICS DIVISION
EXPLOSIONS RESEARCH DEPARTMENT
U, 8§+ NAVAL ORDNANCE LABORATORY

WHITE OAK, MARYLAND
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THE zxpwsrvs PROPERTIES OF THE AMINO-SUBSTITUTED, SYMMETRICAL
TR INITROBENZENES (U)

The purpose of this work was to study the effect of systematic
changes in molecular structure on the shock sensitivity and
detonation properties of a chemically-related series of
explosives. The results of this approach should be of value to
the synthetic organic chemist and the research worker concerned
with sensitivity of explosives and propellants. The work was

done under WepTask No. RUME 4E 000/212- 1/?008-10-004. Study of
Explosive Properties.

R. E. ODENING
Captain, USN
Commander
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1. INTRODUCTION

1.1 Previcovs Studies. Several studies have been reported

correlating the chemical structures ¢f explosive organic

compounds with their thermal stabilities (1,2)*, impact :znsitivi-
"ties (3,4,5), 2nd other explosive properties. Perhaps most -

pertinent to the results reported in the present paper is o

Robertson's work (2) in 1921, wherein thermal stability, : ' : ’

detonability, and shock sensitivity were related to the heats = - Co A\

. “of formation of several organic explosive compounds whose ‘ '

" rompositions were varied by substitution of various alkyl groups.

Forty years later Blincv (5) reported the sensitivity of various

dinitro~compounds of benzene to impace, friction, heat, and

flame. In each of these studies, the duration of the explosion

initiaring stimulus was generally of the order of milliseconds.

Under such long duration stimuli, many workers (e.g. 6,7,8)

consider the explosive response (such as a “go”™ in the impact

hammer machine) a phenomenon intermediate between a thermal

decomposition and a detonation. Or the other hand, initiation

to detonation may occur in times of the order of a microsecond

or less, when the stimulus is applied by means of a shock wave

transmitted through air (9), water (10,11}, or solids (12,13,14).

Comparison of the response of members or a chemically related

series of compounds to such more rapidly applied stimuli had not -

yet been made. This paper will discuss such a set of data.

g

1.2 The Amino-Substituted Trinitrobenzenes. A group of
four chemically related explosive compounds cah be considered
to have been formed by the substitution, cne at a time, of an
amino hlnz) groap for a hydrojen, in symmetrical trinitrcbenzene.

1,3,8-trinitrobenzene s
l-amino-2,4,6-trinitrobenzene THA® ¢
1,3-diamino-2,4,6-trinitzcbenzene DATS

1,3,5-triamino-2,4,6-trinitrobenzene ~=-=cecceee TATB

{(The initials on the right are thoss commonly used to identify
the particular compounds.) These compounds are well known from
the chemical literature (15, 16, 17). For ready reference,
their various physical, cheaical and explosive properties have
been assembled and tabulated in Table 1 (together with the

¥ Raferences will be found on page 23.

*oAnother rame for this compound is "2,4,6-trinitroaniline,”
from which "TEA" is derived, BEven more commonly, this compound
is known ae picramide.

~
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propertiss of TNT for comparison), and thsrefore only a brief
description of each is given here,

Trinitrobenzene is a yellow solid of crystal density,

©1.688 g/cm”®. Perhaps because of its resonating molecular

structure, which permits intramolecular bonding, THD is one of
ths most heat stable explosiveg known, Wher heated, TNB gives
off only a trace of uas at 180 g. nearly 60 C above its melting -
point, evolves less than 0.1 cm?/g/hr at 260°C(2) and does not

' explode until 520°C (1). TNB can be made from trinitrotoluene

(T¥T) by oxidation and decarbexyiization of the resulting
trinicrobenzoic acid. Kast (24 measured the detonation

velocity as a function of chirye density for trinitrobenzene
using the Dautriche method. Koehler and Desvergnes (25} also
used this method to measure a velocity of 7441 m/uec for cast TRB.

some 2 percent above our value (below).

TNA, picramide, is a yellow, needle-like solid melting at
188°C. 1Its crystal density is 1.752 g/cm3. 1t can be prepared
by nitrating aniline in glacial acetic acid. Brisance (3) is
the only explosive property reported to date for picramide.

The NOL synthesis (26) and related studies (27, 28) of DATB
and TATB have renewed interest in these heat resistant o
explosives., DATB has a crystal density of 1.837 g/cm? (23°¢),
melts at 286 C, and although less stable than TNB, decomposes
at a negligible rate at 204°C (24), TATB, ;he most dense member
of the series (crystal density, 1.938 g/cm?), has the highest
melting point, 450°C, and is the least sensitive to mechanical
shocks. S

2. DuTONATION VELOCITY MZASUREMENTS

2.1 Charqge eparation. Por charges with densities from
1.6 to 1.9 g/cm®, 5.0-cm diameter pellets were cbtained by
standard pressing techniques and then machined to smaller
diameters as necessary for the specific individual tests. Charges
with densities from 1.2 to 1.5 g/cm® were obtained by press
loading (at pressures up to 8,000-10,000 psi) 15-gram increments
of the compound into 4.4 to 5.4-cm internal diameter, 0.15-cm
thick, copper or aluminum tubes*, Charges with densities below
1.2 g/cm® were prepared by hand-packing the materiai into pyrex
glass tubing. The detonation wave from charges confined in the
metal tubes was observed through a series of small, evenly spaced
holes drilled through the metal casing. The initiating explosive
train cons.isted of a U.S. Engineer's Special Electric Detonator,
a 5.1-cm diameter plane~wave generator (Baratol-Composition B),
and a 5.l1-cm diameter, S5.l=cm long tetryl pellet.

* With the exception of 2 shots confined in Lucite (Tatle 4, nos.
3 and 4) in which the explosive was pelleted and slipped into the
confining Lucite tube.

‘ 3
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2.2 Detonation Velocity— Charge Density Relationship. The
measured detonation velocities of each series wembsr are listed
.n Tablas 2 to 5, anl} are plotted in Figure 1. The ilge Jrzsm
through the data reprecants Li® mezsuremuznts previously reported
{28) for DATB whose detonation velocity varies linearly with
charge density according to

D - 248C + 2852 p (i 25 m/sec) : (1)
o] .

Velccities of the other series members have an average deviation
of 50 wm/sec fram this line. The agreement indicates the
detonacicn velocity~—charge density relationship is the same for
all members of the seriec: detonation velocity is very :
ingensitive to the number of aminc groups.

2.3 Failure Diameter. The failure diameter was determined
Ly detonating pyramidal charges consisting of three cylindrical
pellets, 2.54, 1.22, and 0.64-cm diameter, stacked in ovder of
decrcasing diameter, On top of the 0.64-cm diameter pellet was
placed a 1.25-cm long, truncated conical section, tapering from
0.b4~-cm diameter at its base to 0.32-cm at the top. The conical
section was not used with trinitrcbenzene because of machining
difficnltics. Detonation of the pyramidal charges of TATB, DATB
and TNA gave normal velocities, with detonation failure occurring
at charge ciameters: 1.3 cm (TATB), 0.53 cm (OATB), and 0.3 cm
(T:'A) « The failure diameter of trinitrobenzene was not ascertained
Ty this method. However detonation propagated without measurable
diminution of rate up to the end of 2.8-cm long, 0.6-cm diameter
THB pcllets,

3. MEASUREMENTS OF THE CHAPMAN-JOUGUET PRESSURES

3.1 Experimental Method. The Lhapman-Jouguet pressures
were experimentally determined using the water tank, or aquarium
sechnique (29). Por convenience, this method is described
briefly: the lower end of a cylindrical charge is immersed to
a depth of 6 cm in distillel water, The upper end of the charge,
protruding above the surface, is initiated to detonation by a
plane~wave generator. As a result, the detonation wave strikes
the water at normal fincidence, and a shock wave is transmitted

‘into the water. The shadowgraph of the shock wave in the .

water is recorded by a rotating-mirror smear camera using
collimated light from an electrically exploded wire light source.
Analysis of the record then yieids the velocity of the shock in
the water as a function of distance from the bottom of the charge.
The velocity (Uy o) of this shock at the water-charge interface

is then obtained®by extrapolation. Having Ug o the equation of
state of water (30) is employed to get the palticle velocity
(“u'o’ and the peak pressure (PH'O’ in the water at the water

4
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TABLE 2

Detonation Velocity of Trinitrobenzene (TNB)

Charge No. Diameter Length Confinement Densi

Sy Detonation
)

' (cm) (cm) ({g/cm Velocity
' (m/sec)
1* . 0.64 2.54 None 1.670 7160
’ 0.64 1.27 * 1.670 7160
1.27 1.30 " 1.657 7160
1.27 1.35 ® 1.657 7160
2.54 2.39 ° 1.662 7160
2.54 2.56 " 1.662 7160
2.54 2.54 " 1.662 7160
2.54 2.39 " 1.647 7160
2 5.24 15,1 Copper 1,264 6090
3 5.24 15.1 . 1.234 6100
4 5.24 15.1 " 1.265 5905
s 4.62 13.7 ~ Glass 1.644 7269

* Charge 1 was in the form of a pyramid, made of cylinders.

TABLE 3
. Detonation Velocity of Picramide (TNA)

Charge No. Diameter Length Confinement DeﬂiI§y Detonation
(cm) (cm) (g/cm?)  Velocity

: {(m/sec)

i Conical** 2,34 None 1.726 -

0.64 1.34 . 1.726 7345

1.27 1.34 . 1.746 7310

1.27 "2.76 * 1.750 7310

2.54 2,76 " 1.737 7560

2,54 2.74 " 1,746 7560

2.54 2.74 . 1.744 7560

2.54 2.77 . 1.728 7560

2 4.43 15.24 Copper 1.485 €800

¥ Charge 1 was in the form of a pyramid, consisting of one
conical, and three cylindrical sections.
#*#Diameter uniformly decreased from 0.63 cm to 0,32 over 2.34-cm

length.

5
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TABLE 4

Detonation Velocity of DATB

Charge No. Dizmeter Length Confinement Densitg Detonation
(cm) {cm) (g/cm?) Velocity
(m/sec)
1* Conical#** 1,250 None 1.816 bkl
0.64 2.540 " 1.816 7620
1.27 2,644 . 1.815 7620
2.54 7.861 - 1.809 7620
2 5.47 13.40 Glass 0.901 5050
3 5.47 15.31 Lucite***+ 1.427 ___ 6600
4 4.48 15.53 " 1.375 6470
5 4.44 15.26 Aluminum 1.381 6470
6 4.44 15.27 » 1,285 6130
7 4.44 15.27 " 1.20% 5880
8 5.08 15.80 None 1.788 ~ 7570
9 5.08 20.47 . 1.793 ~ 7580

* Charge 1 was in the form of pyramid, made of cylinders, plus

a conical apex.

*% Diameter uniformly decreased from 0.64 to 0.32 cm over 1.25 cem

length.

##% Fajlure diameter = 0,53 cm.
**k**% Wall thickness = 0.20 cm,

6
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TABLE 5

Detonation Velocity of TATB

Charge No., Diameter Length Confinement Dennig Detonation
{cm) {cm) (g/cm { Velocity
(m/sec)
1» Conical 0.64 None 1.880 -
0.64 1.27 . 1.881 -
{Boostered 1.27 1.32 * 1.874 7610
by 75/25 1.27 1.35 . 1.879 7610
Cyclotol) 1.27 1.35 " 1.880 7610
1,27 1,32 - 1.878 7614
2,54 2,57 " 1.882 7772
2,54 2,57 . 1.875 7772
2% Conical None 1.864 7650
1.27 2.54 * 1.863 7650
(Boostered 2.54 2,54 " 1,860 7745
by Tetryl) 2,54 2.54 " 1.864 7745
5.08 5.08 - 1.862 7745
5.08 5.08 " 1.864 7745
3 5.08 5.08 Glass 1.802 7658
4 4.45 15,24 Glass 1.508 6555

* Tapered to 0.31 cm from 0.64 cm over 0.64 cm length,
Detonation did not propagate into 0.64-cm diameter section.

*% fTapered to 0.64-cm diameter from 1.27-cm diameter over
1,9-cm length.,
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explos'ive :“.nte;face. The Chapman-Jouguet pressure for the
explosive is then obtained by iterating values of "k" (the

‘isentropic exponent of the product gas expansicn) between two

relations that are derivable {28} from the Riemann postulate

-as applied to an isentropic expansion of the product gases until

the same Poy is obtained from both equations:

2 |
’c: ol (2)
asd ‘ | |
2 -
x2-1 - (x-1) D 1~ k-
by = By g [1 - XN Uago - (Ko ]xar o)
2 2xD

Here, as usual, D represents the detonation velocity of the
explosive, and 5 is its density before detonation.
. o

Using an equation derived by Jacols (31) and Price (32) the
experimentally determined values of D and k permit a calculation
of the energy of dstonation, Q,

a = %2 (x%-1) W)

. 3.2 Results. Valuesof the detonation parameters obtained
by this water shock method for (normal charge densities) DATSB,
TATB, and one plastic-bonded composition of DATB, are listed in
Table 6 where they are compared with those of TNT. These
measurements are considered to be correct to within 1% in shock
velocity. leading to relative errors of apprcximately 3 percent
in the Chapman-Jouguet pressure, 3 percent in kX, and 6 percent
in detonation energy.

4. DETONATION CALCULATIONS

4.1 Heats of Reaction., The heat of reaction, Q, can be
estimated 1f one assumes that on detonation, the order of
forming the product gasesis H 0 @’ Cg)* co, (@)

CONPFIDENTIAL
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. Cés) (if there is insufficient oxygen to form CO,) (33, 34, 25,
: 36)., With this assumption, the reactions would be ‘

A \ - + + +
- - ° (9] + . + * + 2. (o4 ’
™TATB: CHNO ««v=- 3 RBO +3CO+3IN_+3C (‘

The measured heats of formation (18. 19, 20) are . ', .

H ~11,40 k cal/mole,
s (TNB) = /

M iay = -20,07 k cal/mole,

H ~29.23 k cal/mole
(oara) © /mole,

AB(TA‘!‘B) = -136.85 k cal/mole.

Using the heat-of-formation data (37) of the decomposition
products, the heats of reaction are calculated to be as foilows,
with the detonation energy from the aquarium measurements
(Table 6) shown in parenthesis;

Q = 937 cal/g (e1l), | :

(TNB)

¥

o

Q (THA) = 903 cal./q.‘ %
e (DATB) 875 cal/g (800),

’ o).
0(,“”) 857 cal/g (829)

The calculated Q values over estimate the experimental v
detonation energies by 3 percent for TATB, 9 percent for OATB !
and 13 percent for TNB. The calculated values decrease as the
molecular weight of the species increases but the trerd in the

11
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=xper imental values iudicates the detonation energy is approxi=
mately the same for each series membex.

4.2 Halford-Kistiakowsky-kilcon Egquation of State. By
following the calculation scheme outlined in Apgsadix A, the :
Hal ford-Kistiakowsky-Wilson (HKW) equation of state (33) was
used to obtain theoretical values of the detonation parameters
for these compounds, Table 7. S

TABLE 7

Calculated Detonation Parameters

~0aspound po(g/cn3) D(m/sec) P (kb) v(c-3/q) T (°x) Qlcal/g)

Tﬁ! 1.6 7082 18l1.4 .4837 2950 937
THA ‘1.6 7055 179.8 .4839 2839 903
DATB . 1.6 7010 170.3 +.4865 2638 87s ~
TATB 1.6 7058 171.2 +4906 2574 857 .

The constant detonation velocity of 7050 (constant to 0.6%)
meters per second obtained for the four compounds is in agreement
with the experimental data first, in that the velocities for all,
at a given initial density, are equal; and second, at the initial
density of 1.€0 g/cm® the experimentally observed velocity was
7040 m/sec. This unusually-close agreement between the
calculated and observed detonation velocity values testify to

the applicability of the HKW eyuation of state to the detonation
reactions of organic explosives of the type discussed in this
report.

The calculated detonation pressures appear to be about i5
per cent low, compared to the values experimentally obtained
with shocked water as the pressure-measuring device. Purther
refinement of the data, both theoretical and experimental, will
have to be performed before this difference can be reconciled.

The detonation temperatures, ranging from 2574 for TATB to
2950 for THB, are consistent with the decrease in the detonation
:notqy calculated as the molecular weight of the species .
ncreases.

12
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5. SENSITIVITY 70 SLOWLY APPLIED SHCCKS

5.1 Impact Sensitivity and Oxygen Balance. The sensitivity
of the explosives in this chemically related series, to relrtively
slowly applied, low pressure, mechanical shocks (as are developed
in the impact hammer test), shows a monotonic decrease, with an
increase in the number of amino groups. TNB and picramide have
impact sensitivities (50% points) of 103 and 177 cm respectively
on the NOL impact hammer machine (38); TATB and DATB do not :
initiate, even at the maximwm height (320 cm) of the NOL machine.
7.is ordering of sensitivity of the compounds is the same as the
ordering of their heats of formation: the most sensitive, TNB,
has the lowest heat of formation. As demonstrated by Kamlet (4)

a correlation exists between impact sensitivity and oxygen balance
for structurally related groups of explosives containing C-NO,.

or N-lO. bonda. This correlation for TNB, TNA, DATB and TATB?is
shown ik Table 8 where the oxygen balance (to CO) per 100 grams
of tie compound (i.e., OB/100) has been computed by the equation,

100 (2n, - -2 S
0B/100 = (29 - Py - 2nc) o 9)
Mole Wt, H.E. : :

and the n's rei:resent the number of atoms of the partlcular
element, in one molecule of explosive.

TABLE 8

Correlation of Impact Sensitivity with Oxyqén
Balance and Heat of Pormation

"~ Iwpact
Molecular RFE OB Sensitivit
Compound Formula Mole Wt. (X cal/mole) 100g Height (cm
TSA CHNO 228 -20.07 -1.78% 177
6446
DATB c6n5'5°6 243 «29,23 -2,06 »320
TATB c636"6°6 258 -36.85 -2,33 »320

*Reference (28)

Thus, in Table 8, the (absolute) OB/100 value increases from
1.40 TNB) to 2.33 (TATB) as the impact hammer values increase
frum 103 (TNB) to >320 (TATH).

13
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The impact hammer data shows that all members of this zeries
of compounds are considerably less sensitive to mechanical shocks
of this type than Composition B (impact hamser S0 percent point
equals 65 t 5 cm). As will be seen shortly, when the pressure
pulse is Qelivered more rapidly as in the transamission of a
shock wave, the sensitivities of several of these compounds are
very similar to that of Composition B. : :

6. SENSITIVITY TO RAPIDLY APPLIED SHOCKS

6.1 Wedge Test Measurements. The initiation of detonation
in solid explosives by shock waves transmitted through air, water,
or solids, generzlly occurs within a few microseconds. The WOL-
wedge test (12, 28) is designed to study within such short times;.
the details of the build-up-to-detonation, as a function of the
input shock pressure. In this test an explcsive wedge is
impacted by a plane shock wave from an explosively-driven plate,
usually brass. :

—»
—_—
Plane shock wave ’ Shock wave arrival on
enters explosive —* d V this surface recorded
wedge here R by a smear camera,
—»| B.E using reflected light.
— P
—~

The velocity of the transmitted shock wave, as the wave advances:
through the explosive wedge, is obtained as a function of the
distance travelled by the shock through the wedge. From thias
set of data a large amount of information can be inferred
concerning the behavior of the test explosive specimen. Por
example, one can Jetermine one point on the Hugonioet curve for
the unreacted explosive from these measurements {13. More
important, since one obtains a set of values of the velocity of
the wave (in the wedge) as a function of its penetration into
the wedge, one gets a detailed picture of how this shock builds
up from a (presumably) inert shock into an accelerated shock,
and (finally) into a steady-state detonation. Tables 9 and 10
contain the various data obtained from the wedge test,

Pigure 2 shows a typical curve for the Luild-up to detonation
in a 25" DATB wedge, along with curves for pressed and cast Comp
B. The initial shock velocity in the DATB was 4750 m/sec. The
amplitude of this shock was 76.5 kilobars. The outstanding feature
of this curve is that the instantaneous shock velocity within the
explosive rises 10 to 20% above the normal detonation velocity
(7600 m/sec) before receding and stabilizing at the normal detonation

14
CONFIDENT IAL




. CONFIDENTIAL
NOLTR 63-31

) ‘WO-QT°S SSMUNDTYI wnwyxem ‘ofpea sexbep-gf »

00%9 cLe*t PeAIINGO su) AO0US eayIdwey Ktuo | £LZ°1 ws
0029 008°1 €8L°0 0°90T - 6211 002§ LTt 'Y 4
€98°Y €8L°0 €°601 6211 00tS X A ¢ €
930uU039Qd z98°1 8LL"O 1°601 ortt oris Lt 4
03 patrel T98°1 8eL* o L°E8 9L6 . T19Y 2 3 4 ) ¢
: v
00SL ote‘t s$18°0 S°9L z68 L9LY 18°¢ 9
06SL €18°1 018°0 9°9L 68 9ELY 18°¢ 13
00LL 66L°T zZ6L°0 8°z8 6L6 00LY "9z 1 4
0Z9L €08°1 008°0 »°s8 TL6 oL8y "2 €
09vL si8°1 osL*o €°66 {911 099% IR A § T
oveL 0z8°1 0sL°0 2°66 L9911 oL L' T
— T e | @0 | Geem | (Geszm)
(o9s /um) .nﬁU\mv (CA/A) ‘d°H ‘a°H ‘g°H
{(teutd) | **a°*H ‘9°H eoxnssexd Kayootea | Kayootea ()
a ' o uotrssaxdwod Xdoys 8TOTIIRG xPoys PTYL ‘on
d TeyITUI YeTITUT AT IL 1eratuy | esexg | 04S

GNL pue ‘dlvl ‘divd ®Ing 103 siajoweIed 189l ebpem

6 TTEVL

13
COMPIDENTIAL




‘WO-0T € SSAUYSTYI wnuyxva ‘sbpem verbep-ze ,
oovL - 0§9°1 eeeto $°0L 606 869V 1|t z
00ZL L€Y" Z6L°0 LoLe €66 osLy ¥z 1
(S/56)
A/ YNL
m 0SEL TEL°Y o18°0 0°9¢ L6 oz1s »e°z 1
i
] -t
S . (S/56)
m ° | Noawarva
0 o :
ke
M m,. @3R°U0IIQ |
m Z ©3 pattreg LL°t t6L° 0 0o°zs8 Z86 oZLivy 2 9K 4 4
0seEL M LL*1 6S8L°0 ; v°66 311 [174:] 4 1 sl
_. . (s/56)
w W | L
: m i g, /giva
o _ ) Po(ax) (o8 /w) (oss/u;
(98/w) . (.wd/B) (a/a) | *a‘n *3°H *a°H
a : *3°H _ ‘I°H Jdanssaxgd | A3roorea | Karootea (=)
: o ~ uotzsaxduio ¥d20Ys 81dt13aRd ¥o0ys ASTYL| °*oN
| g IRTITU] IeT3TUY Ier3yul JeTITul | sseagl joyus
¥NL PU® @LV¥G 3O sudTitsodwo) pIpuog-OTISeT] I03 Si9jsueied Isag sbrem

0T ITavy

CONFIDENTIAL




INSTANTANEQUS SHOCK VELOCITY (MM/MICROSEC)

CONFIDENTIAL
NOLTR 63- 8!
i
il
l. i
' i
[
|| ;
' |
1 {__PRESSED COMPB ) SHOT NO.I
e 3
HH i (p=1.545 G/CM3) O SHOT NO.2
e ,
9l--— 4§+ ’
IRy
b
[}
]
]
' -—---1!’-\-—-- ---—-._
' Ly
! < o=
]
7 i

CAST COMP B
{p=1.710 G/CM3)

o 2 4 6 8 10 (¥4 14
WEDGE THICKNESS (MM)

FIG. 2 INSTANTANEOUS SHOCK VELOCITIES IN DATB AS A FUNCTION OF SHOCK
PERETRATION DEPTH COMPARED TO COMP B.
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vaeloas o A iy rrey (ool 1 : :

v g-:},. 4 FUrprising resuit shown in' this curve is that (other

:g?q thie velocity “over-hoot”) the build-up in DATB is not toco ' )
differe £y - 1t 1

dff%ergnt f7om that of cast Cemposition B (12)., This marked B
":“—efgnce from its behavicer in the impact hammer test shows ' ‘ *
seeat Ltk sersitivity of DATB to mechanical shocks i

chat ! : ocks is strongl .

dependent on the rate of thock loading. o ‘

. o FATE at an 1nitial density of 1.86 g/cm® when formed ints a

257 wedge (maxiaum thickness 1.3 cm) did not produce an acceler«ting
snock wave wl.ich built up tc detenation even though a pressure of
109 kb wes transmitted to the wedge. However, when a 32° wedge
(maximum thickness 3.1 em) was used to provide a longer shock run,
and the initial shock pressure transmitted to the wedge was 106 kb,
a pronounced velocity overshoot reaching 11,000 m/sec occurred
after the shock had penetrated 1.6 cm into the wedge. In contrast
"0 the velocity overshoots noted in the DATB results with 25%
wedges, thiz shock wave did not settle to 7900 m/sec, the normal
detonaticn velocity of TAIB at 1.86 g/cm®., Instead the wave
velocity rrceded to a steady value of only 6200 m/sec for the
remaining wedge thickness, ) ‘

Wedges of suitable quality were not easily machined from ‘ .
high density pellets of picramide and trinitrobenzene because
the pellets tended :o fall apart during machining. By replacing
the wedge (in the wedge test) with cylindrical pellets of various .
thicknesses, tuild-up-to-detonation data, analogous to that of
the wedge test were obtained. When picramide pellets, 1 to S5-mm
thick were subjected to a transmitted shock of 30 kb an initial
{inert) shock wave developed having a velocity of 5000 m/sec.
High velocity detonation was obtained in pellets 3 to 4 mm thick
as evidenced by the appearance of luminous product gases in the
camera record. In wedge tests of picramide, plastic-bonded with
zytel (95/5), velocity overshoots exceediny 8500 i/sec ware
observed (FPigure 3). The data points for these curves wvere
obtained by subjecting 30-degree wedges to transmitted pressures
ot 77.7 and 70.5 kb,

In 3 to 10-mm thick trinitrobenzene pelic*s of density
1.69 g/cm?®, shocked to about 90 kb, an initial iu-tantaneous
shock wave velocity 2f 6800 m/sec was obtained., Since this
velocity was just 200 m/sec less than the normal detonation
velocity obtained for 5.l-cm diameter TNB, we conclude that the -
J-mm pellets of TNB were initiated to full detonation vithin a
thickness less than l-mm by the 90 kb shock.
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INSTANTANEOUS SHOCK VELOCITIES AS A FUNCTION OF
SHOCK PENETRATION DEPTH FOR PICRAMIDE /ZYTEL (95/5)
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The wedge test data for the above compounds are listed in
Table 9. Table 10 contains the data for some of these compounds,
plastic-bonded with various binders: o

DATB/BRL 2741* (95/5), DATB/EPON** (95/5), and r‘nﬂytol'“(’i!s/s)'.

When a 25-degree wedge of DATB/BRL 2741, was shocked, the shock
wave failed to build up to detonation even though the initial
pressure developed within ths wedge was 82 kb, On the other hand
build-up-to-detonation (from an initial velocity of 5120 m/sec)
with a 86 kb shock wave pressure was obtained with a standard
1l.3-cm high, 25-degree wedge of DATB/EPON 1001 (95/5). (This:
difference could be related to the difference in behavior between
the two plastics.,) When the shock run for the DATS/BRL 2741 was
increased to 3.1 cm (using a 30-degree wedge), and the trans-
mitted pressure increused to 100 kb, a swmooth build-up-to-
detonation was obtained,

7. CONCLUSIONS

7.1 Detonation Properties. The steady state detonation
parameters of TNA, TNB, DATB and TATB are insensitive to the
numbey of aminc groups.

The detonation velocity-charge density relationship
D = 2480 + 2852 p (g/cm”’}, and measured detonation energy
of 813 * 15 cal/g are the same for each series member.

Detonation velocities of TNA, TNB, DATB, and TATB at
loading densities of 1.6 g/cm3 are predicted within 2¥X by
the hydrodynamic theory, using the HKW equation of state.

At charge densities of 1.80 g/cm®, the measured detonation
pressures of DATB and TATB are 251.0 kb and 259.4 kb
respectively. A detonation pressure of 174.6 kb was measured
for TATB at 1.50 g/cm®, At 1.64 g/cm® a detonation pressure
of 219.2 kb was measured for TNB.

7.2 Sensitivity. The shock sensitivity and failure diameter,
are functions of the number of amino groups, heats of formation
and oxygen balance. From the most sensitive to shocks, to the
least sensitive, both the heat of formation and oxygen balance
increase as one goes from TNB to TNA, DATB, and TATBs; i.e. a3
the number of NH, groups increases. THA gave detonation failures
at diameter abouf 0.3-cm; DATB and TATB fail at 0.53-cm and
1.3-cm diameters rcoj-cilvely,

BRL 2741 (Phenolic Resin), The Bakelite Corporation, Mew York
City, New York.
#s2PON (Epoxy Resin):; Shell Epon 1001; Shell Chemical Company,

Emeryville, California.

sesNylon, trade name, 20
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The sensitivity of these compounds to mechanical shocks, as
exhibited in the NOL wedge test, decreases as the number of NH,-
groups increas Thus even though a 100 kb pressure developea
within the wedgo. TATB failed to detonate. However under the :
same shock pressure normal detonation was developed in 1.8 mm by

: DA'rB and even less than 1.8 mm by both TNA and m

21
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* APPENDIX A
THERMO~-HYDRODYNAMIC THEORY OF DETONATION
The properties of detohation waver in s0lid explosives have
been studied by various investigators (33, 34, 35, 36) uaing the
Halford-Kistiakowsky-Wilson equation of state, : M
: n RT Bx‘ .
P(V -1,) = 2 (L+3Xe ), (A1) -
m s M \ . :
X = F (v -mw) 1 (A2)
u m s ’
ad = 1/4.
B = 3/10.

Vp and V_ are the specific volumes of the gas-solid mixture and
of the sdlid respectively, 17 is the weight fraction of the
solid, and n_ is the number of moles of product gases per M
grams of theImixture. K is the empirical covolume parameter of
the i-th gas and is a summation made over all gas species
present,

In a detonation, the chemical energy ruleased is equal to
difference between the internal energy of the products and of
the initial materials. The expression for M grams of explosiie,
assuming the incompressibility of solid products is

u
-— »
Evom ” z(v‘_‘. T,) " g S (T -7T) *[ _:_:_ av + Q,

(a3)

and in terms of the Halford-Kistiakowsky-Wilson equation of state,

% E BX :
I (F—vgdv = n RTexe . (ae)
L J
The mean 1deal heat capacity, ¢, in cal/mole/°K at constant
volume for each decomposition product is given by
J— 1 Ky
Cv T-7 J cvd'l'. (AS)
T .
o
A=l
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where A= n A; B=n B, are constants. The heat of reaction
per mole is % 12 :

- Q = HFE - L n HF
i i

nq RTO. » > (A7)
HFE is the heat of formation of the explosive E n, HF. is the sum
of the individual molar heats of formation of the dec&mpositicn
products and n_ is the number of moles of prodvct gases. The
last term in Eauation (A7) is the difference between the reaction
carried out at constant pressure and constant volume, assuming
ideal behavior of the product gases. ‘ ‘ '

The Rankine-Hugoniot equation for a reacting ohdck wave is

Bv.m - l’(vo. o "VEERAR) -V e

IfP> P and T = 300°K (where the zero subscript refers to
condition8 ahead®of the reactive shock (detonation), and the
expressions for C_ and the HKW equation of st»ie are used, the

Rankine-Hugcniot Vbecomes a quadratic in T, :

BT + T (A - B 300°K - ng ¥) - @ - A-300°K =0, (a9)
where
RP v -1
sz [-] .
V= T ————— - X . {(Al0)
2 ( Va - WV, ) (x)
1 sn RaoalXe BXx R (Al1l)
(x) g9
and
4 =14+ Xe nx. (A12)
()
A-2
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(various I-functions have been tabulated and an iterative
procedure developed by Snay (35, 39) for their use in detonation
calculations.) )

The internal energy of the products in the detonation wave
is a function of either T and Vor of P and V., If P and V are to
be determined individually a second relation il :oquiud. This
is furnished by the equation o s

. o
(Z), - ’

which is derived from the Chapman-Jougquet condition,

D = u+cC (Al‘,

D is the detonation velocity, u, the particle velocity, and C,
the velocity of sound at the iront. ( _@_25“ is the gradient
3 « '
of the line in the P-V diagram which represents the Rankine-
Hugoniot equation. If the identity and total number of moles
of product gases are fixed by an assumed decomposition equation
for the mxplosive at a given loading density, Equation (A9) may
be solved for T for each value of X. The pressure and volume
for each value of X and T are calculated from the equation of
state, When a number of P-V points have been obtained in this
way, the Hugoniot curve can be drawn. The tangent drawn to the
curve from the point on the line P = 0 at which V= V_, determines
the detonation valocity of the explosive, and the pro?mrc and
specific volume in the Chapman-Jouguet plane.

A=3
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